sábado, 23 de octubre de 2010

promedio

La estadística promedio representa muy bien el 'centro' de la distribución de los datos cuando se trata de casos 'normales'. Entendemos aquí por casos 'normales' aquellos conjuntos de datos que no contienen valores muy extremos, valores muy alejados de los demás. 

muestra

Es un subconjunto de casos o individuos de una población estadística.

poblacion

En estadística, también llamada universo o colectivo, es el conjunto de elementos de referencia sobre el que se realizan las observaciones.

estadística descriptiva

La estadística descriptiva es una gran parte de la estadística que se dedica a analizar y representar los datos. Este análisis es muy básico. Aunque hay tendencia a generalizar a toda la población, las primeras conclusiones obtenidas tras un análisis descriptivo, es un estudio calculando una serie de medidas de tendencia central, para ver en qué medida los datos se agrupan o dispersan en torno a un valor central.

estadistica

La estadística es una ciencia referente a la recolección, análisis e interpretación de datos, ya sea para ayudar en la resolución de la toma de decisiones o para explicar condiciones regulares o irregulares de algún fenómeno o estudio aplicado, de ocurrencia en forma aleatoria o condicional. Sin embargo estadística es mucho más que eso, dado que en otras palabras es el vehículo que permite llevar a cabo el proceso relacionado con la investigación científica.

ley de cosenos

El teorema del coseno es una generalización del teorema de Pitágoras en los triángulos no rectángulos que se utiliza, normalmente, en trigonometría.

ley de senos

El teorema del seno es una relación de proporcionalidad entre las longitudes de los lados de un triángulo y los senos de los ángulos respectivamente opuestos.

sistema sexagesimal

El sistema sexagesimal es un sistema de numeración posicional que emplea la base sesenta. Tuvo su origen en la antigua Babilonia. También fue empleado, en una forma más moderna, por los árabes durante el califato omeya. El sistema sexagesimal se usa para medir tiempos (horas, minutos y segundos) y ángulos (grados, minutos y segundos). En dicho sistema, 60 unidades de un orden forman una unidad.

Teorema de Pitágoras

El Teorema de Pitágoras establece que en un triángulo rectángulo el cuadrado de la longitud de la hipotenusa (el lado de mayor longitud del triángulo rectángulo) es igual a la suma de los cuadrados de las longitudes de los dos catetos (los dos lados menores del triángulo rectángulo: los que conforman el ángulo recto). 

trigonometría

La trigonometría es la rama de las matemáticas que estudia las relaciones entre los ángulos y los lados de los triángulos. Para esto se vale de las razones trigonométricas, las cuales son utilizadas frecuentemente en cálculos técnicos.

potencia

Es el producto que resulta al multiplicar una cantidad o expresión por sí misma una o más veces.

ábaco

Un ábaco es un objeto que sirve para facilitar cálculos sencillos (sumas, restas y multiplicaciones) y operaciones aritméticas. También es un cuadro de madera con alambres paralelos por los que corren bolas movibles y que sirve para enseñar el cálculo. Su origen se remonta a la zona de Asia Menor, muchos años antes de nuestra era.

ecuación

Una ecuación es una igualdad entre dos expresiones algebraicas, denominadas miembros, en las que aparecen valores conocidos o datos, y desconocidos o incógnitas, relacionados mediante operaciones matemáticas. Los valores conocidos pueden ser números, coeficientes o constantes; y también variables cuya magnitud se haya establecido como resultado de otras operaciones. Las incógnitas, representadas generalmente por letras, constituyen los valores que se pretende hallar.

productos notables

Productos notables es el nombre que reciben aquellas multiplicaciones con expresiones algebraicas cuyo resultado puede ser escrito por simple inspección, sin verificar la multiplicación que cumplen ciertas reglas fijas. Su aplicación simplifica y sistematiza la resolución de muchas multiplicaciones habituales.

algebra


El álgebra es la rama de las matemáticas que estudia las estructuras, las relaciones y las cantidades (en el caso del álgebra elemental). Es una de las principales ramas de la matemática, junto a la geometría, el análisis matemático, la combinatoria y la teoría de números.

Nikolái Lobachevski

Fue un matemático ruso del siglo XIX.
Nació en Nizhni Nóvgorod y estudió en la Universidad de Kazán. Enseñó en Kazán desde 1812 hasta 1846, llegando a ser profesor de matemáticas en 1823.
Entre sus principales logros, se encuentra la demostración de varias conjeturas relacionadas con el cálculo tensorial aplicados a vectores en el espacio de Hilbert.
Fue uno de los primeros en aplicar un tratamiento crítico a los postulados fundamentales de la Geometría euclidiana.

geometría no euclidiana

Se denomina geometría no euclidiana, a cualquier  forma de geometría cuyos postulados y propiedades difieren en algún punto de los establecidos por Euclides en su tratado Elementos. 

geometría euclidiana

La geometría euclidiana es aquella que estudia las propiedades del plano y el espacio tridimensional. En ocasiones los matemáticos usan el término para englobar geometrías de dimensiones superiores con propiedades similares. Sin embargo, con frecuencia, geometría euclidiana es sinónimo de geometría plana.

axiomas

En geometría sintética, los axiomas son proposiciones o afirmaciones que relacionan conceptos, definidos en función del punto, la recta y el plano. Se distinguen cuatro grupos de axiomas. Un quinto grupo de axiomas (el axioma de paralelismo) es el que distinguirá una geometría de otra.
En geometría analítica, los axiomas se definen en función del punto; no tiene sentido hablar de recta o plano. f(x) puede definir cualquier función llámese recta, circunferencia, cuadrado de la circunferencia, planos, entre otros.

geometria

La geometría, del griego geo (tierra) y metrón (medida), es una rama de la matemática que se ocupa de las propiedades de las figuras geométricas en el plano o el espacio, como son: puntos, rectas, planos, polígonos, poliedros, paralelas, perpendiculares, curvas, superficies, etc. Sus orígenes se remontan a la solución de problemas concretos relativos a medidas y es la justificación teórica de muchos instrumentos, por ejemplo el compás, el teodolito y el pantógrafo. Tiene su aplicación práctica en física, mecánica, cartografía, astronomía, náutica, topografía, balística, etc. También da fundamento teórico a inventos como el sistema de posicionamiento global (en especial cuando se la considera en combinación con el análisis matemático y sobre todo con las ecuaciones diferenciales) y es útil en la preparación de diseños (justificación teórica de la geometría descriptiva, del dibujo técnico e incluso en la fabricación de artesanías).